Efficient Semiautomatic Segmentation of 3D Objects in Medical Images

نویسندگان

  • Andrea Schenk
  • Guido P. M. Prause
  • Heinz-Otto Peitgen
چکیده

We present a fast and accurate tool for semiautomatic segmentation of volumetric medical images based on the live wire algorithm, shape-based interpolation and a new optimization method. While the user-steered live wire algorithm represents an efficient, precise and reproducible method for interactive segmentation of selected twodimensional images, the shape-based interpolation allows the automatic approximation of contours on slices between user-defined boundaries. The combination of both methods leads to accurate segmentations with significantly reduced user interaction time. Moreover, the subsequent automated optimization of the interpolated object contours results in a better segmentation quality or can be used to extend the distances between user-segmented images and for a further reduction of interaction time. Experiments were carried out on hepatic computer tomographies from three different clinics. The results of the segmentation of liver parenchyma have shown that the user interaction time can be reduced more than 60% by the combination of shape-based interpolation and our optimization method with volume deviations in the magnitude of inter-user differences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

A Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures

Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation

PURPOSE Recent advances in medical imaging technologies provide opportunities to quantify the tumor phenotype throughout the course of treatment non-invasively. The emerging field of Radiomics addresses this by converting medical images into minable data by applying a large number of quantitative imaging algorithms. Accurate tumor segmentation is one of the main challenges of Radiomics. It has ...

متن کامل

Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.

PURPOSE Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. METHODS In this paper, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000